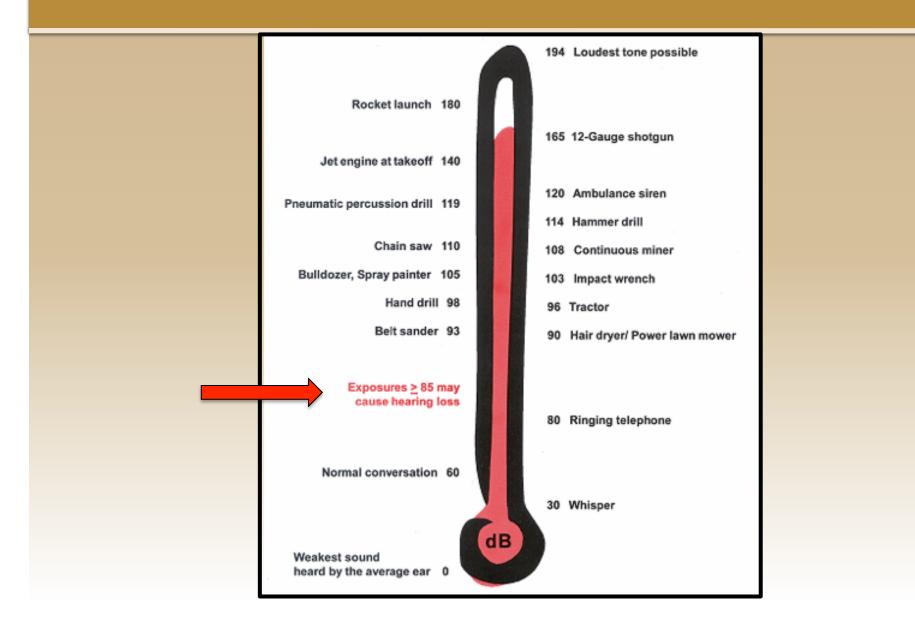
# Hearing Loss Prevention for Musicians

Beth Cooper, PE INCE.Bd.Cert. Fellow INCE/USA Internal Agency Hearing Conservation Consultant

National Aeronautics and Space Administration Office of the Chief Health and Medical Officer







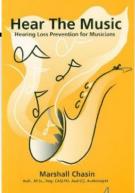

## Repeated long-term exposure to high sound levels causes hearing loss

- Industrial (workplace) noise
- Shop equipment and power hand tools
- Lawn care equipment
- Sporting events
- Motor sports events
- Recreation (snowmobiles, ATVs)
- Bars and clubs
- Exercise-related noise (group classes, mp3 player)

NASA Auditory Demonstration Labora:

### Sound levels of common sources



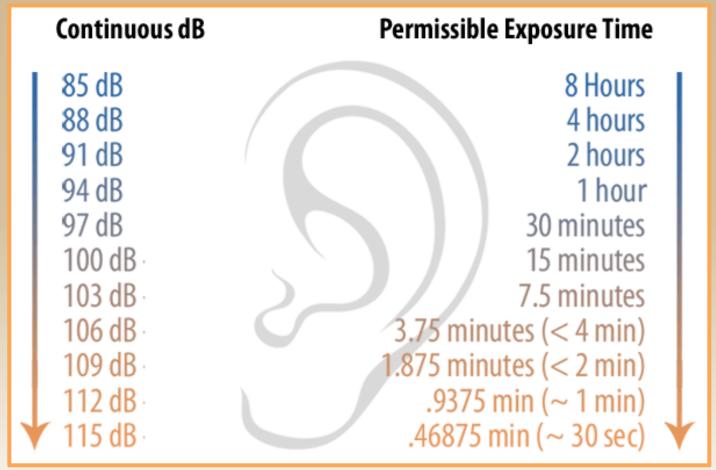

#### Can music cause NIHL?

| Loudness Level | dB SPL   |
|----------------|----------|
| ppp            | 40 - 50  |
| pp             | 45 - 55  |
| p              | 50 - 60  |
| mf             | 55 - 70  |
| f              | 70 - 80  |
| ff             | 80 - 90  |
| fff            | 90 - 110 |

From Marshall Chasin's Hear the Music (2010)

< \$10 from Amazon.com






# Damage-risk criteria for noise-induced hearing loss (NIHL)

- Hearing loss risk is based on cumulative "dose"
  - Sound level (in dBA)
  - Duration of exposure
  - Different mechanism from acoustic trauma due to single extreme exposures (e.g., blast noise)
- As level increases, allowable level decreases
- Accepted criteria based on industrial noise data
  - 85 dBA for 8 hours (40 hours/week)
  - 3 dB Exchange Rate: 85 dBA TWA (referred to as 85/3)
  - All sources of noise 24/7 contribute



## 85 dBA/3 equivalent exposures



http://www.dangerousdecibels.org/education/information-center/decibel-exposure-time-guidelines/

NASA Auditory Demonstration Laborator

6

# Every instrument can produce hazardous sound levels!

| Musical Instrument (at 3 meters)*                | dB (A-weighted) | dB SPL (peak) |
|--------------------------------------------------|-----------------|---------------|
| Normal piano practice                            | 60-90           | 105           |
| Loud piano                                       | 70-105          | 110           |
| Keyboards (electric)                             | 60-110          | 118           |
| Vocalist                                         | 70-85           | 94            |
| Chamber music (classical)                        | 70-92           | 99            |
| Violin/viola (near left ear)                     | 85-105          | 116           |
| Violin/viola                                     | 80-90           | 104           |
| Cello                                            | 80-104          | 112           |
| Acoustic bass                                    | 70-94           | 98            |
| Clarinet                                         | 68-82           | 112           |
| Oboe                                             | 74-102          | 116           |
| Saxophone                                        | 75-110          | 113           |
| Flute                                            | 92-105          | 109           |
| Flute (near right ear)                           | 98-114          | 118           |
| Piccolo                                          | 96-112          | 120           |
| Piccolo (near right ear)                         | 102-118         | 126†          |
| French Horn                                      | 92-104          | 107           |
| Trombone                                         | 90-106          | 109           |
| Trumpet                                          | 88-108          | 113           |
| Tympani and Bass drum                            | 74-94           | 106           |
| Percussion (high hat near left ear)              | 68-94           | 125           |
| Amplified guitar (on stage using ear-monitors)   | 100-106         | 118           |
| Amplified guitar (on stage with wedge monitors)  |                 | 124           |
| Symphonic music                                  | 86-102          | 120-137       |
| Amplified rock music                             | 102-108         | 140+          |
| Portable music (eg, iPod) in ear canal (vol = 6) | 94              | 110-130**     |
| iPod in ear canal (vol = full)                   | 105             | 110-142**     |

http://www.hearingreview.com/issues/articles/2006-03\_02.asp



| Musical Instrument (at 3 meters)* | dB (A-weighted) | dB SPL (peak) |
|-----------------------------------|-----------------|---------------|
| Normal piano practice             | 60-90           | 105           |
| Loud piano                        | 70-105          | 110           |
| Keyboards (electric)              | 60-110          | 118           |
| Vocalist                          | 70-85           | 94            |
| Chamber music (classical)         | 70-92           | 99            |
| Violin/viola (near left ear)      | 85-105          | 116           |
| Violin/viola                      | 80-90           | 104           |
| Cello                             | 80-104          | 112           |
| Acoustic bass                     | 70-94           | 98            |
| Clarinet                          | 68-82           | 112           |
| Oboe                              | 74-102          | 116           |
| Saxophone                         | 75-110          | 113           |
| Flute                             | 92-105          | 109           |
| Flute (near right ear)            | 98-114          | 118           |
| Piccolo                           | 96-112          | 120           |
| Piccolo (near right ear)          | 102-118         | 126†          |



| French Horn                                     | 92-104  | 107     |
|-------------------------------------------------|---------|---------|
| Trombone                                        | 90-106  | 109     |
| Trumpet                                         | 88-108  | 113     |
| Tympaniand Bass drum                            | 74-94   | 106     |
| Percussion (high hat near left ear)             | 68-94   | 125     |
| Amplified guitar (on stage using ear-monitors)  | 100-106 | 118     |
| Amplified guitar (on stage with wedge monitors) | 105-112 | 124     |
| Symphonic music                                 | 86-102  | 120-137 |
| Amplified rock music                            | 102-108 | 140+    |



#### What musical activities can be hazardous?

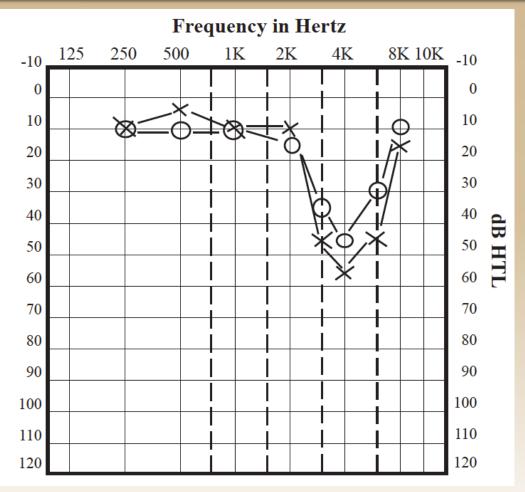
- Listening to music
  - Live
  - Recorded, in a room
  - Recorded, with mp3 player
- Performing music
  - Rehearsals with ensembles
  - Practicing alone
    - Aggravated by small practice rooms



#### NIHL is sensorineural hearing loss

- Damages inner ear
- Permanent and irreversible
- Progressive, as long as exposure continues
- May be combined with conductive hearing loss from other causes
  - Impacted wax, foreign bodies in ear canal
  - Otosclerosis, otitis media
- Influenced by various individual risk factors




#### Individual risk factors

- Smoking
- Level of physical fitness
  - Benefit increases with age
- Genetic pre-disposition
- Ototoxin exposure (alone and with noise)
  - "Workplace" chemicals (heavy metals, solvents)
  - Medications
    - Chemotherapy side effect drugs
    - Aminoglycocide antibiotics



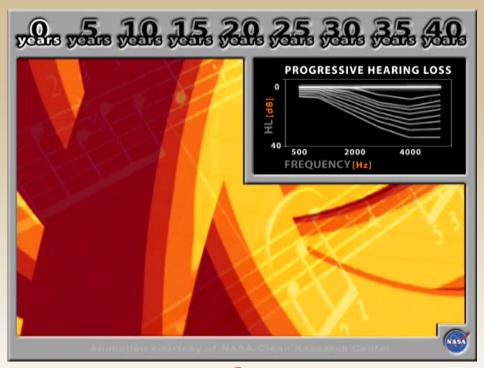
### Classic NIHL audiogram

- Audiogram
   characterized by
   "noise notch" at 4
   kHz, which widens
   and deepens with
   continuing loss
- Impacts highfrequency consonant speech sounds and musical harmonics





#### NIHL effects on communication


 Characterized by increasing difficulty understanding speech, especially in noise





### NIHL impairs enjoyment of music

Affects ability to enjoy music because timbre loses brilliance and definition





### Noise exposure risks for musicians

- Noise-induced hearing loss
- Tinnitus (ringing or buzzing in the ears)
- Pitch perception problems
- Temporary threshold shift (TTS) after exposure
  - Muffled or dull sound after unprotected exposure
  - Precursor to permanent threshold shift (PTS)
  - After repeated exposure, TTS becomes PTS
  - Always treat TTS as a warning signal



#### Does it matter whether you like the sound?

- Classical answer is NO
  - Only the level and duration of exposure affect risk
- Various studies have shown that "hating the music" may have a protective effect
- Rock musicians have less hearing loss
  - Singing or grunting along with the music activates protective stapedial reflex
  - Exposure duration is greater for classical musicians



### Other factors that affect susceptibility

- Intermittency of music allows stapedial reflex to reset
  - Provides 10 30 dB protection from impulse noise
  - Effect only lasts 10-15 seconds
- Industrial noise is more continuous and benefits less from this effect



## Strategies for preventing NIHL

- Limit off-hours exposure to hazardous sound levels
- Always wear adequate hearing protection proactively
  - Recreational noise
  - Lawn care, home maintenance
  - Casual music listening (clubs, bars, concerts)
- Lower the volume when listening to recorded music

NASA Auditory Demonstration Laborato

- Practice at moderate sound levels when possible
- Modify performance/practice environments
  - Reduce reflected sound and direct exposure
- Rest your ears as much as possible

#### Recommendations for iPod use

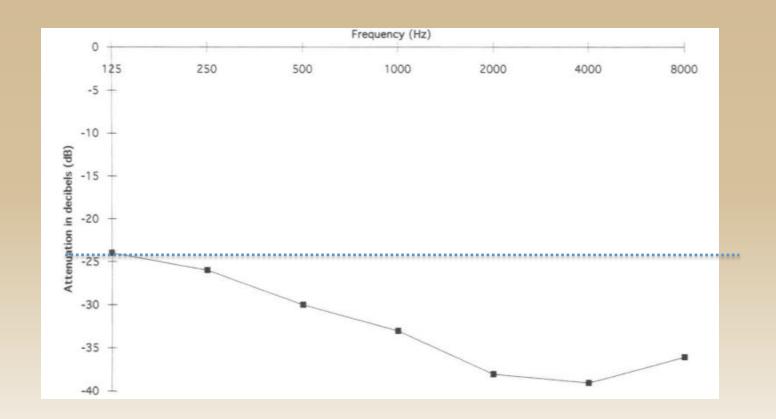
- "Fligor Rule"
  - Maximum iPod volume settings to obtain 50% maximum dosage (accommodates other sources)
    - Set at 60% of full volume for 120 minutes/day
    - Set 80% of full volume for 90 minutes/day
- Depends on earphone used
  - "Best" earphone (in-ear) isolates you from environment
- Always use earphones in both ears
  - Volume needs to be 6 dB more intense for one ear



## Strategies to reduce noise exposure while performing

- Recommend consultation with qualified acoustical engineer
  - Performance space architectural treatments
  - Relative placement of musicians (instrumentdependent)
    - Space between musicians
    - Seating heights that direct sound away from ears
    - Baffles to deflect sound
  - Specific devices for individual instruments
    - Acoustic monitors for bass string instruments

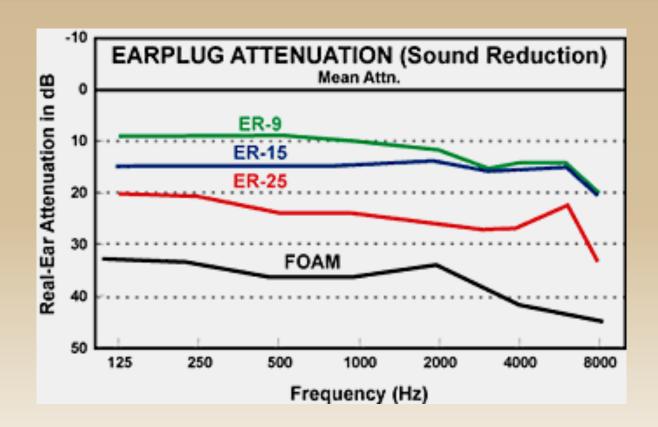



## What about "industrial" earplugs?

- Not suitable for use when performing
  - Attenuation is too high; can result in overplaying and stress/strain (e.g., percussionists)
  - Attenuation is not flat; distorts spectrum
- Not ideal for critical listening
- Acceptable hearing protection in casual music venues and for other sources of noise exposure (e.g., recreational noise)






# Attenuation of classic (industrial) earplugs



Chasin, Marshall. <u>Musicians and the Prevention of Hearing Loss. San Diego: Singular Publishing Group, Inc., 1996. p. 86.</u>

NASA Auditory Demonstration Laboratory

## Flat attenuation Musicians Earplugs™ vs. deep-inserted foam plugs

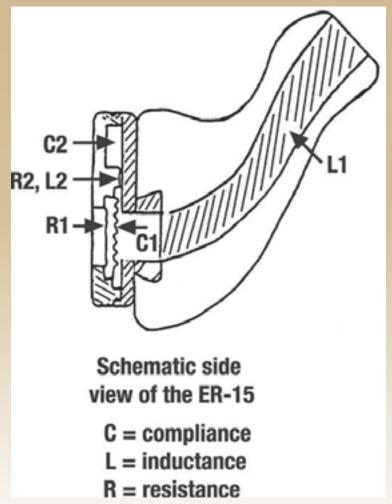


http://www.etymotic.com/pdf/er\_hearing\_protection\_brochure.pdf



### Custom-Molded Musicians Earplugs™

http://www.etymotic.com/hp/erme.html


- 3 filter inserts allow choice of attenuation
  - -9dB
  - 15 dB
  - -25 dB
- Select filter to match each exposure scenario
- Deep insertion to second bend in ear canal reduces "occlusion effect" (plugged, hollow sound)





## How Musicians Earplugs™ work

- Diaphragm functions as an acoustic compliance.
- Volume of air in the sound bore of the custom earmold acts as an acoustic mass.
- The combination of the two produces a resonance at approximately 2700 Hz (as in normal ear), which results in smooth, flat attenuation.





## Making a custom earplug

- Audiologist makes an impression of the ear canal using soft material injected deep into the canal
- Partially hardened impression is removed and sent to earmold lab to make custom plug



http://www.earimpressions.com/links/instructions.cfm



## "Off-the-shelf" option

NASA Auditory Demonstration Laboratory

- Etymotic Research ER20
- Provides ~ 20 dB attenuation
- Slight high frequency roll-off
- Cost is ~\$10 \$12
- Available from
   Amazon.com and other
   sources



## Custom vented/tuned earplug

- Provides no attenuation below 2000 Hz and 20-28 dB attenuation of high frequencies
- Adjustable vent allows tuning attenuation
- Allows musician to hear lower frequencies (typically own playing) while protecting from loud higher frequency sounds produced by other instruments
- Intended for players of low instruments
- Allows vocalists to better monitor own voice

NASA Auditory Demonstration Laborate

## In-ear monitors for amplified music

- Replaces stage monitor "wedge" speakers
- Reduces minimum acceptable listening level by ~ 6 dB
- Custom-molded earpieces
- "Off-the-shelf" options available







### Local Resources for Custom-Molded Musicians Earplugs™

EMU Speech and Hearing Clinic

John W. Porter Bldg., Ste. 135

Dr. Lidia Lee lidia.lee@emich.edu

O'Connor Hearing Center

203 S. Zeeb Rd., Suite 207

Ann Arbor, MI 48103

Phone: (734)994-8300

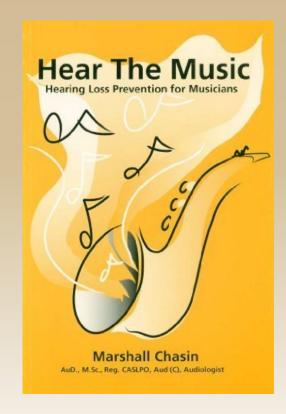
http://www.oconnorhearing.com/

University of Michigan - Audiology Division

1500 E Medical Center Dr., TC 1904

Ann Arbor, MI 48109-0312

Phone: (734)936-7507


http://www.med.umich.edu/oto/divisions/audioindex.shtml



### To learn more, start here

#### Marshall Chasin

- Director of Research at the Musicians'
   Clinics of Canada (http://www.musiciansclinics.com/hearing\_loss.asp)
- Blog editor at <a href="http://hearinghealthmatters.org/">http://hearinghealthmatters.org/</a>hearthemusic/
- Author of <u>Hear the Music</u>
   (\$8.50 from Amazon.com)





#### More educational resources

#### Dr. Kris Chesky

- Director of Education and Research at the Texas Center for Music and Medicine, University of North Texas
- http://www.unt.edu/untresearch/2007-2008/music.htm

#### Dr. Brian Fligor

- Director of Diagnostic Audiology for Children's Hospital, Boston and Instructor in Otology and Laryngology at Harvard Medical School
- Research on noise-induced hearing loss in children and teens,
   particularly from personal mp3 players
- Demonstrations of listening with hearing loss and with hearing protectors:
  - http://www.childrenshospital.org/clinicalservices/Site2148/mainpageS2148P27.html



## Resources for working with children and teens

- Dangerous Decibels (Oregon Health & Science University)
  - <a href="http://www.dangerousdecibels.org/">http://www.dangerousdecibels.org/</a>
- National Hearing Conservation Association
  - http://nhca.affiniscape.com/displaycommon.cfm?an=1&subarticlenbr=13
- National Association for Music Education
  - http://musiced.nafme.org/about/position-statements/health-in-music-education/
- American Speech Language Association
  - http://www.listentoyourbuds.org/
- American Academy of Audiology
  - http://www.turnittotheleft.com/default.htm



#### NASA EARLAB Resources

- Download Auditory Demonstration collections:
  - http://buyquietroadmap.com/ and browse collections
- Contact me:
  - Beth.A.Cooper@nasa.gov



